

Two-Pass Connected Component Labeling (CCL) for Binary Image

Azriel Rosenfeld and John L. Pfaltz

Journal of ACM, 1966

Speaker: Shih-Shinh Huang

February 28, 2021

Outline

- Introduction
 - About CCL
 - Connectivity
 - Connected Component

- Two-Pass Labeling
 - Approach Overview
 - First Pass
 - Second Pass

- About CCL
 - CCL is a fundamental operation in many image analysis applications.
 - group the connected points into a region
 - transform the unit to be processed from point to region

license plate recognition

- About CCL
 - The input to CCL is a binary image
 - 0: background points
 - 255: object points
 - The output of CCL is a label image
 - The label denotes the region identifier (0 stands for background region)
 - All connected points are with the same label.

- Connectivity
 - Adjacency: p_i and p_j are adjacent (neighbor) if their point squares share a common part
 - edge: 4-connectivity (N_4)
 - vertex: 8-connectivity (N_8)

8-connectivity (N_8)

- Connectivity
 - Definition: two object points p and q are called connected if theres exist a path from p to q

$$\boldsymbol{p} \rightarrow p_0 \rightarrow p_1 \rightarrow p_2 \rightarrow \cdots \rightarrow p_n \rightarrow \boldsymbol{q}$$

- $p_0, p_1, ..., p_n$ are all object points
- $p_i \rightarrow p_j$ denotes p_i and p_j are adjacent

Connectivity

4-connectivity (N_4)

8-connectivity (N_8)

are the object points *p* and *q* connected?

- Connected Component
 - Definition: a maximum set *S* of object points that are connected of each other.
 - p and q are connected, and $p \in S$, $\Rightarrow q \in S$
 - $\bullet p \in S$ and $q \in S \Rightarrow p$ and q are connected

- Approach Overview
 - scan the image for two times
 - go from left to right and top to bottom
 - only deal with the object points but skip the background points.

- Approach Overview
 - First Pass: assign temporary labels and record equivalence relations
 - Second Pass: resolve label equivalence and replace temporary labels.

TwoPassCCL(image)

initialize *label_map* with the value 0

//second two

resolve label equivalence

```
for row=0 to image.rows - 1
for col=0 to image.cols - 1
if image[row, col] is not background
```

• replace temporary labels

return *label_map*

- First Pass: assign temporary labels
 - Step 1: collect the labels in adjacent points of the object point p as N(p)

4-connectivity (N_4)

8-connectivity (N_8)

- Step 2: assign a temporal label to p
 - $N(p) = \emptyset$: assign p a new label
 - $N(p) \neq \emptyset$: assign p a minimum in N(p)

- First Pass: record equivalence relations
 - Condition: more than one label in N(p)
 - current point p connects different labels in N(p)
 - add equivalence relation $l_i \sim l_j$ for $l_i, l_j \in N(p)$

$$N(p) = \{2,3\}$$

1~4

$$N(p) = \{1,4\}$$

$$N(p) = \{2,5\}$$
 2~5

- Second Pass: resolve label equivalence
 - Step 1: create single-integer-item sets
 - Step 2: process every equivalence pair $l_i \sim l_j$ to form equivalence classes

- Second Pass: replace temporary labels
 - replace the label at p by the minimum of the set containing the label of p

$$\{1,4\}, \{2,3,5\}$$

$$\{1,4\} \to 1$$

$$\{1,4\} \rightarrow 1$$

 $\{2,3,5\} \rightarrow 2$

TwoPassCCL(image)

initialize *label_map* with the value 0

```
// first pass
for row=0 to image.rows - 1
  for col=0 to image.cols - 1
      if image[row, col] is not background
      assign temporary labels
      • record equivalence relations
//second two
resolve label equivalence
for row=0 to image.rows - 1
  for col=0 to image.cols - 1
      if image[row, col] is not background
        replace temporary labels
```

- *N* =collected labels in adjacency of point *p* (row, col)
- if $N = \emptyset$
 - assign a new label to p
- else
 - assign minimum of *N* to *p*
- *if* |N| > 1
 - $l_i = \min(N)$
 - add equivalence relation $l_i \sim l_j$ for all $l_j \in N$

return *label_map*

TwoPassCCL(image)

initialize *label_map* with the value 0

```
// first pass
for row=0 to image.rows - 1
  for col=0 to image.cols - 1
  if image[row, col] is not background
      assign temporary labels
    record equivalence relations
```

//second two

• resolve label equivalence

```
for row=0 to image.rows - 1
  for col=0 to image.cols - 1
  if image[row, col] is not background
      replace temporary labels
```

return *label_map*

- create single-integer-item sets,{1},{2},......
- for each equivalence pair (l_i, l_j)
 - unify two sets that contains l_i and l_j , respectively.
- replace the label at p by the minimum of the set containing the label of p

